
Software Impacts 6 (2020) 100027

B

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

RE2C: A lexer generator based on lookahead-TDFA
Ulya Trofimovich
Not affiliated to an organization

A R T I C L E I N F O

Keywords:
Lexical analysis
Regular expressions
Finite automata

A B S T R A C T

RE2C is a regular expression compiler: it transforms regular expressions into finite state machines and encodes
them as programs in the target language. At the core of RE2C is the lookahead-TDFA algorithm that allows
it to perform fast and lightweight submatch extraction. This article describes the algorithm used in RE2C and
gives an example of TDFA construction.

Code metadata

Current code version 2.0
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2020-29
Permanent link to reproducible capsule https://codeocean.com/capsule/6014695/tree/v1
Legal Code License Public domain
Code versioning system used Git
Software code languages, tools, and services used C++, Bison, RE2C (self-hosting)
Compilation requirements, operating environments & dependencies OS: Linux, BSD, Nix/Guix, GNU Hurd, OS X, Windows, etc.

Dependencies: C++ compiler, Bash, CMake or Autotools. Optional Bison and Docutils.
Link to developer documentation/manual https://re2c.org
Support email for questions re2c-general@lists.sourceforge.net

1. Introduction

Regular expression engines can be divided in two categories: run-
time libraries and lexer generators. Run-time libraries perform inter-
pretation or just-in-time compilation of regular expressions. They use a
variety of algorithms ranging from recursive backtracking to automata,
string searching, or some combination of the above. Lexer genera-
tors, on the other hand, perform ahead-of-time compilation. They use
algorithms based on deterministic finite automata (DFA) and spend
considerable time on compilation and optimization in order to emit
better code. Consequently, lexer generators usually do not support fea-
tures that cannot be implemented on vanilla DFA. One such feature is
submatch extraction — the ability to find the correspondence between
parts of the regular expression and parts of the input string. Submatch
extraction is a special case of the parsing problem: in addition to solving
the recognition problem it has to find the derivation of the input string
in the grammar defined by the regular expression. Unlike full parsing,

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.

E-mail address: skvadrik@gmail.com.

submatch extraction needs only a partial derivation. Therefore it would
be wasteful to perform full parsing, and a more specialized algorithm
is needed that has overhead proportional to submatch detalization. For
an optimizing lexer generator like RE2C [1,2] it is important that the
generated code is at least as fast and memory-efficient as hand-written
code, and there is zero overhead if submatch extraction is not used.

2. Tagged DFA

The above requirements place tight constraints on the submatch
extraction algorithm: it should be a one-pass DFA-based algorithm that
works in constant memory independent of the input length. Such an
algorithm was invented by Ville Laurikari [3]. It works as follows.
First, the regular expression is converted to a nondeterministic finite
automaton with tagged transitions (TNFA). Tags are submatch markers
that can be placed anywhere in the regular expression; for example, a
https://doi.org/10.1016/j.simpa.2020.100027
Received 28 July 2020; Received in revised form 29 July 2020; Accepted 4 August 2020

2665-9638/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.simpa.2020.100027
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2020.100027&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2020-29
https://codeocean.com/capsule/6014695/tree/v1
https://re2c.org
mailto:re2c-general@lists.sourceforge.net
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:skvadrik@gmail.com
https://doi.org/10.1016/j.simpa.2020.100027
http://creativecommons.org/licenses/by-nc-nd/4.0/


U. Trofimovich Software Impacts 6 (2020) 100027
Fig. 1. Lookahead-TDFA construction for regular expression 𝑎∗ 𝑡1(𝑡2 𝑏)∗𝑐 with tags 𝑡1 and 𝑡2 that matches strings 𝑎… 𝑎𝑏… 𝑏𝑐 (tag 𝑡1 marks the boundary between 𝑎s and 𝑏s, and
tag 𝑡2 marks the last 𝑏). Top: TNFA (𝜖∕𝜖 labels are omitted, and negative tags indicate no-match). Middle: lookahead-TDFA under construction with state-sets, register matrices
and lookahead tags (𝑝 is the current position, and ∅ is no-match). Bottom left: lookahead-TDFA after construction. Bottom right: lookahead-TDFA after optimization (the number
of registers is minimized and some register operations are removed).

capturing group can be represented with a pair of tags for the opening
and closing parentheses. TNFA is in essence a nondeterministic finite
state transducer that rewrites symbolic strings into tagged strings. The
most important part of Laurikari algorithm is TNFA determinization.
Its basic principle is the same as in the powerset construction that
converts NFA to DFA: the NFA is simulated on all possible input strings,
maintaining a set of states at each step. If the current state-set is new,
it becomes a new DFA state, otherwise it is mapped to an existing
DFA state. In the Laurikari algorithm state-sets are augmented with tag
information: each TNFA substate has an associated vector of registers
that store tag values, so that the whole state-set is a matrix indexed by
TNFA states and tags. Registers are needed because different substates
are reached by different TNFA paths, and the tags along one path may
disagree with tags along another path. If a tag is updated on a TNFA
path, its value is stored into a new register. The augmented state-sets
cannot be mapped in the same way as ordinary DFA states, because a
pair of state-sets may have identical TNFA substates, but different regis-
ters. The key insight is that mapping of such state-sets is still possible if
there is a bijection between their registers: the bijective transformation
can be encoded in the form of register reordering operations on TDFA
transitions. After determinization all the information in TDFA state-sets
is erased, and the resulting TDFA is like ordinary DFA extended with a
fixed number of registers and operations on transitions that update and
reorder tag values stored in registers. Algorithms like minimization are
applicable to TDFA, but they need to differentiate between transitions

3. Lookahead TDFA

One improvement to Laurikari algorithm that allows to greatly
reduce the number of register operations is the use of the lookahead
symbol [4]. The idea is to delay the application of register operations
until the lookahead symbol is known, and attach the operations to
the outgoing transition on that symbol instead of the preceding in-
coming transition. The insight is that some of TNFA paths that have
reached the current TDFA state are canceled after the application of
lookahead symbol, and all register operations associated with these
paths can be canceled as well. In other words, delaying for one step
allows one to split register operations on the lookahead symbol, and
instead of doing all of them, do only the relevant part. This requires a
modification to the underlying TDFA state-sets: in addition to registers,
each substate needs to have an associated list of lookahead tags. The
additional information is erased after determinization, and the resulting
lookahead-TDFA is faster than ordinary TDFA and better suited for
further transformations like minimization and register allocation. On
the whole, this idea is similar to the improvement of LALR parsers over
LR parsers: the use of lookahead information in states greatly reduces
the number of conflicts (for TDFA a conflict is not an error, but it means
extra registers and register operations). An example of lookahead-TDFA
construction can be seen on Fig. 1.

4. Ambiguity resolution

One of the challenges that makes parsing harder than recognition
is ambiguity: there may be several ways to parse the input string.
with different register operations. Which way to prefer is usually defined by a disambiguation policy.

2



U. Trofimovich Software Impacts 6 (2020) 100027
TDFA algorithm can be parameterized over different policies; for ex-
ample, RE2C supports both the Perl leftmost-greedy policy and the
POSIX longest-match policy [5]. Disambiguation happens at the time
of determinization (in 𝜖-closure construction), and the resulting TDFA
does not perform any disambiguation at run-time: ambiguity-resolving
decisions are embedded into its structure.

5. Impact

RE2C is a lexer generator of choice for projects that need fast lexical
analyzers. It has a flexible user interface that allows one to customize
the generated code for a particular environment and input model. Fast
and lightweight submatch extraction is yet another feature that makes
RE2C a good alternative to other lexer generators. Notable projects that
use RE2C are the following:

• Ninja, a build system with a focus on speed. [6] Ninja is used
in a great number of open-source projects, and it is a necessary
building block in many operating systems and platforms.

• PHP, a popular general-purpose scripting language. [7]
• BRL-CAD, a constructive solid geometry solid modeling computer-

aided design system. [8]
• STEPCode, an implementation of ISO 10303 standard. [9]
• Apache SpamAssassin, a program for e-mail spam filtering. [10]
• Yasm, the Modular Assembler Project. [11]
• Wake, the SiFive build tool. [12]

RE2C has a permissive license, which allows it to be used in propri-
etary software as well. The project has been ported to many operating
systems; according to Repology [13], it is packaged in more than 60
distributions. Besides being a useful practical tool, RE2C is a research
playground for the development of new algorithms in the field of
automata and formal languages.

6. Conclusion and future work

Submatch extraction algorithm implemented in RE2C is both an
important theoretical development and a useful practical improvement.
It allows one to program lexical analyzers capable of submatch ex-
traction without resorting to manual post-processing or the use of
string-searching functions. The overhead on submatch extraction is
proportional to submatch detalization: there is zero overhead if no
submatch information is needed, and even for large submatch-heavy
regular expressions like RFC-compliant URI and HTTP parsers the
overhead is modest (about 1.25x compared to simple recognition on
DFA [4]). Future work may relate TDFA to other parsing automata,
such as DSST [14] and sta-DFA [15], and investigate the possibility of
using tagged counter automata for counted repetition [16].

CRediT authorship contribution statement

Ulya Trofimovich: Conceptualization, Software, Validation, Formal
analysis, Writing - original draft.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

I want to thank my parents Vladimir and Elina, my friend and
fellow researcher Angelo Borsotti, my school math teachers Tatyana
Leonidovna and Demian Vladimirovich, and, most of all, Sergei.

References

[1] RE2C, a lexer generator for C, C++ and Go. Website: https://re2c.org, source
code: https://github.com/skvadrik/re2c.

[2] Peter Bumbulis, Donald D. Cowan, RE2C: A more versatile scanner generator,
ACM Lett. Programm. Lang. Syst. (LOPLAS) 2 (1-4) (1993) 70–84.

[3] Ville Laurikari, NFAs with tagged transitions, their conversion to deterministic
automata and application to regular expressions, in: Proceedings Seventh Inter-
national Symposium on String Processing and Information Retrieval, 2000. SPIRE
2000, pp. 181–187, URL: http://laurikari.net/ville/spire2000-tnfa.pdf.

[4] Ulya Trofimovich, Tagged Deterministic Finite Automata with Lookahead, 2017,
cs.FL.

[5] Angelo Borsotti, Ulya Trofimovich, Efficient POSIX submatch extraction on NFA,
preprint, 2019, URL: https://re2c.org/2019_borsotti_trofimovich_efficient_posix_
submatch_extraction_on_nfa.pdf.

[6] Ninja build system, URL: https://ninja-build.org, build files that use RE2C:
https://ninja-build.org/build.ninja.html.

[7] PHP Internals Book, chapter Building PHP, URL: http://www.phpinternalsbook.
com/php7/build_system/building_php.html.

[8] BRL-CAD: Tools, URL: http://sourceforge.net/p/brlcad/code/HEAD/tree/brlcad/
trunk/misc/tools/re2c.

[9] STEPCode: Build Process, URL: https://stepcode.github.io/docs/build_process.
[10] SpamAssassin (sa-compile), URL: https://spamassassin.apache.org/full/3.2.x/

doc/sa-compile.html.
[11] Yasm, URL: https://yasm.tortall.net.
[12] Wake, URL: https://github.com/sifive/wake.
[13] Repology: RE2C. URL: https://repology.org/project/re2c/information.
[14] Niels Bjørn Bugge Grathwohl, Parsing with Regular Expressions & Extensions to

Kleene Algebra, DIKU, University of Copenhagen, 2015.
[15] Mohammad Imran Chowdhury, StaDFA: An Efficient Subexpression Matching

Method (Master thesis), Florida State University, 2018.
[16] Michela Becchi, Data Structures, Algorithms and Architectures for Efficient

Regular Expression Evaluation, Washington University In St. Louis, School of
Engineering and Applied Science, 2009.
3

https://re2c.org
https://github.com/skvadrik/re2c
http://refhub.elsevier.com/S2665-9638(20)30018-X/sb2
http://refhub.elsevier.com/S2665-9638(20)30018-X/sb2
http://refhub.elsevier.com/S2665-9638(20)30018-X/sb2
http://laurikari.net/ville/spire2000-tnfa.pdf
http://arxiv.org/abs/1907.08837
https://re2c.org/2019_borsotti_trofimovich_efficient_posix_submatch_extraction_on_nfa.pdf
https://re2c.org/2019_borsotti_trofimovich_efficient_posix_submatch_extraction_on_nfa.pdf
https://re2c.org/2019_borsotti_trofimovich_efficient_posix_submatch_extraction_on_nfa.pdf
https://ninja-build.org
https://ninja-build.org/build.ninja.html
http://www.phpinternalsbook.com/php7/build_system/building_php.html
http://www.phpinternalsbook.com/php7/build_system/building_php.html
http://www.phpinternalsbook.com/php7/build_system/building_php.html
http://sourceforge.net/p/brlcad/code/HEAD/tree/brlcad/trunk/misc/tools/re2c
http://sourceforge.net/p/brlcad/code/HEAD/tree/brlcad/trunk/misc/tools/re2c
http://sourceforge.net/p/brlcad/code/HEAD/tree/brlcad/trunk/misc/tools/re2c
https://stepcode.github.io/docs/build_process
https://spamassassin.apache.org/full/3.2.x/doc/sa-compile.html
https://spamassassin.apache.org/full/3.2.x/doc/sa-compile.html
https://spamassassin.apache.org/full/3.2.x/doc/sa-compile.html
https://yasm.tortall.net
https://github.com/sifive/wake
https://repology.org/project/re2c/information
http://refhub.elsevier.com/S2665-9638(20)30018-X/sb14
http://refhub.elsevier.com/S2665-9638(20)30018-X/sb14
http://refhub.elsevier.com/S2665-9638(20)30018-X/sb14
http://refhub.elsevier.com/S2665-9638(20)30018-X/sb15
http://refhub.elsevier.com/S2665-9638(20)30018-X/sb15
http://refhub.elsevier.com/S2665-9638(20)30018-X/sb15
http://refhub.elsevier.com/S2665-9638(20)30018-X/sb16
http://refhub.elsevier.com/S2665-9638(20)30018-X/sb16
http://refhub.elsevier.com/S2665-9638(20)30018-X/sb16
http://refhub.elsevier.com/S2665-9638(20)30018-X/sb16
http://refhub.elsevier.com/S2665-9638(20)30018-X/sb16

	RE2C: A lexer generator based on lookahead-TDFA
	Introduction
	Tagged DFA
	Lookahead TDFA
	Ambiguity resolution
	Impact
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


